

Legac-E Education

Data Structures in REXX

© Copyright Legac-e Education 2014-2018

Whilst any data item could be subdivided into elements or fields the concept is
more common when processing records from a file. Records will comprise a
number of fields. A personnel record for instance may contain such items as
Forename, Surname, Date-of-birth, Postal address, Gender, Title, joining-
date, Department, telephone number etc.

The problem in REXX is that it whilst it can process records to or from either
the Data Stack (External Data Queue) or STEM variables, its only view of a
given record is as a complete entity, there is no concept of data structures
which may exist in other languages.

does not have any intrinsic file processing capability but relies on the
functionality of the environment it runs in. For TSO this means the use of
EXECIO to read or write records.

To cater for the lack of structures REXX provides two potential solutions for
processing individual fields within a record, and these solutions are:

• Parsing

• Substring processing (SUBSTR Built-in Function)

 Let us assume that the COBOL definition of the record looks like this.

COBOL Group Structure

 01 LOCO-REC.
 03 LOCO-NO-S PIC 9(5).
 03 FILLER PIC X.
 03 LOCO-DES-S PIC X(10).
 03 LOCO-BLDA REDEFINES LOCO-DES-S
 05 LOCO-FIRM PIC X(10).
 03 FILLER PIC X.
 03 LOCO-POWER-S PIC XXX.
 03 FILLER PIC X.
 03 LOCO-NAME-S PIC X(29).

Legac-E Education

Data Structures in REXX

© Copyright Legac-e Education 2014-2018

Assuming that EXECIO is used to read the records into a STEM called rr. and
that 10 records were read.

To extract the LOCO-DES-S field from the fifth record then either the PARSE
instruction or the SUBSTR built-in function can be used.

Parsing instruction
Parse var rr.5 . 7 loco_des_s 17 .
Say ‘Locomotive designer is: ’ loco_des_s

Here the parse instruction is using two place-holders so that the information
not required can be thrown away, and the result should be that everything
between positions 7 and 16 within the record is copied to the variable
loco_des_s.

If the record had been read into the Data Stack rather than a STEM Variable
the following code achieves the same result:

Parse Pull . 7 loco_des_s 17 .
Say ‘Locomotive designer is: ’ loco_des_s

SUBSTR Built-in Function

Loco_des_s = SUBSTR(rr.5,7,10)
Say ‘Locomotive designer is: ’ loco_des_s

Here a sub-string starting at position 7 for a length of 10 bytes is extracted
from the string held in rr.5.

