

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

On LinkedIn in July 2018 a question was raised as to the possibility of
controlling the execution of a Job Step from within a COBOL program. The
case presented was of a three step job where the second step should be
omitted but that for whatever reason an alternative to the use of Condition
Codes was being sought.

Obviously language design, Assembler, COBOL, JCL, PLI and REXX to name
a few, rely upon the passing of Return Codes which externally become
Condition Codes within JCL. What is more there is no easy access to such
information within the executing job step. System Management Facility (SMF)
will hold information once a step has completed, as will the IEF142I message
issue a step end.

Job Design

This question is linked to Job Design as if jobs were created as single step
entities reliant upon the Scheduler for the correct processing sequence there
would be few if any issues. This aspect was discussed in:

www.legac-e.co.uk/JCLdocs/jobdes.pdf

If forced to make a recommendation then the single step per job approach
would be it as it avoids the issue raised and makes re-run situations much
less complicated.

The Internal Reader (INTRDR)

Technically there is the potential to use the Internal Reader (INTRDR) to have
the first program of a sequence submit subsequent programs as separate
jobs, but this lacks a holistic approach. Operations are responsible for
managing the system and ensuring that the correct jobs are run in the
relevant sequence at the correct time and they rely on a Scheduling Package
such as Tivoli Workload Scheduler (TWS), CA-7, or CONTROL-M, to aid
them. Computer Auditors typically raise issue if production work is submitted
outside of Scheduler control. Encouraging the submission of jobs outside
of the Scheduler is akin to sanctioning development outside of
Endeavor or equivalent and should not be recommended.

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

A Harness

The concept of a harness is that the multi-step job is converted to a single
step job with all the DD statements of the programs which constituted the
multiple steps. The single EXEC statement names the harness program which
calls the other programs based on criteria specified by the use. This does not
contravene the principle of submitting work via the Scheduler as it would still
track the overall job as usual. The initial challenges with this approach are
likely to be:

• DD Statement conflicts such as the same name is used by different
programs for different files

• Multiple use of the same DDNAME for the same purpose but which
might cause data loss, i.e. repeated opening of SYSPRINT

• How to restart at a particular point within the sequence

An early incarnation of such a program generated a false sense of ease, but
there are significant architecture difference now compared to the early 1970s
when everything ran in 24-bit mode so additional challenges became evident:

• Parameter lists for IBM Utilities need to be in 24-bit storage

• The default addressing mode (AMODE) for COBOL with Language
Environment (LE) is 31-bit both AMODE and RMODE.

• The use of VSAM files particularly if DELETE and DEFINE are
contemplated dynamically

There may be other challenges which were not identified in the
experimentation that was undertaken and described in the rest of this
document.

What is clear is that producing a harness program is feasible but is not
something that would be recommended.

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

Overcoming the challenges

DDNAME SYSOUT

This DDNAME is used by both COBOL and LE for diagnostic purposes and
the recording of messages produced by COBOL DISPLAY. There is no
conflict here once the data set has been opened subsequent messages are
written in sequence irrespective of source so there is no conflict. The following
is therefore valid for all requirements:

 //SYSOUT DD SYSOUT=*

DDNAME SYSPRINT

The problem here is that any called program which issues an OPEN / CLOSE
sequence for SYSPRINT may overwrite any output produced by a preceding
program which performs the same operation. To overcome this, two actions
were taken

1. Dynamically invoke IEBGENER with alternate DDNAMES as part of
termination so that accumulated SYSPRINT could be written out to a
new report file

2. Include a SYSPRINT DD Statement like:

//SYSPRINT DD DISP=(MOD,PASS),SPACE=(TRK,5),
// LRECL=125,RECFM=VBA,BLKSIZE=1254

DDNAME SYSIN

The test requirement involved IDCAMS being called twice and IEBGENER
once therefore the conflict arising from SYSIN was dealt with thus;

1. The IEBGENER DDNAME list was updated to use GENSYSIN rather
than SYSIN

2. Each IDCAMS SYSIN was given an alternative name, IDCAMS01 for the
first occurrence and IDCAMS03 for the second (logically step 3).

3. The harness program would read the appropriate IDCAMSnn file when
required and output the records to a DD Statement like:
//SYSIN DD LRECL=80,RECFM=FB,BLKSIZE=0,
// SPACE=(TRK,5)

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

Dynamic VSAM DELETE / DEFINE

With IDCAMS being called twice to DELETE any existing cluster of the
desired name, and following it with a DEFINE to create the new cluster there
was the potential to have a “DATA SET NOT FOUND” error in respect of the
DD statement which would subsequently use the cluster. The first attempt at
resolving this used a first step to invoke IEFBR14 to create the necessary
data set shells which IDCAMS could DELETE and which would ensure that
there was no JCL error. This caused a different problem as by the time the
program which needed the cluster ran it was in a different place to the one
established at allocation time and hence the programs OPEN failed.

The ultimate resolution was to use Dynamic File allocation for the VSAM file in
the called program which meant that both issues were fixed and the IEFBR14
step was not required. The called program was further modified to de-allocate
the cluster after CLOSE so that step end was mimicked and the data set was
free for other users.

IBM IEB Utility AMODE(24) Parameters

Rather than have a separate IEBGENER step to process the accumulated
SYSPRINT data set, IEBGENER was called dynamically but this produced an
addressing issue as the old IEB Utility parameters are required to be below
the 16MB line, whereas the default AMODE and RMODE for COBOL is 31,
i.e. above the 16MB line.

Two actions were taken to ensure there was no conflict:

1. The program was compiled with:
CBL DATA(24),RMODE(24)

2. The program was executed with the LE Run Time options so the PARM
looked like:

 // PARM=’ALL ,S01/ALL31(OFF),STACK(,,BELOW)

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

The Sample Harness Program

This is not a fully functioning harness as it only provides for two scenarios,
either running all the programs in the schedule or simply running a single
program. The capability to omit a program is not present other than to simply
delete it from the SCHEDULE file or replace its name with IEFBR14.
 CBL DATA(24),RMODE(24)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. HARNESS
 AUTHOR. T.R.SAMBROOKS.
 INSTALLATION.
 DATE-WRITTEN. 22nd jul 2018.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.

 * Program to demonstrate effective omission of Job Steps. *

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT PGM-LIST ASSIGN TO UT-S-SCHEDULE.
 SELECT DYN-FILE ASSIGN TO UT-S-DYNFILE.
 SELECT CNTL-FILE ASSIGN TO UT-S-SYSIN.
 SELECT SYSPRINT-IN ASSIGN TO UT-S-SYSPRINT.
 SELECT STEPMSGS-OUT ASSIGN TO UT-S-STEPMSGS.
 DATA DIVISION.
 FILE SECTION.
 FD PGM-LIST RECORDING MODE IS F
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 RECORD CONTAINS 80 CHARACTERS
 DATA RECORD IS PGM_REC.
 01 PGM-REC.
 03 STEP-NAME PIC X(3).
 03 PIC X.
 03 PGM-NAME PIC X(8).
 03 PIC X.
 03 GOOD-CC PIC 99.
 03 PIC X.
 03 PARM-DD PIC X(8).
 03 PIC X.
 03 PARM-DSN PIC X(54).
 03 PIC X.

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

 FD DYN-FILE RECORDING MODE IS F
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 RECORD CONTAINS 80 CHARACTERS
 DATA RECORD IS DYN_REC.
 01 DYN-REC PIC X(80).
 FD CNTL-FILE RECORDING MODE IS F
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 RECORD CONTAINS 80 CHARACTERS
 DATA RECORD IS DYN_REC.
 01 CNTL-REC PIC X(80).
 FD SYSPRINT-IN RECORDING MODE IS V
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 RECORD VARYING 50 TO 121
 DEPENDING ON PRINT-RDW
 DATA RECORD IS SYSPRINT-REC.
 01 SYSPRINT-REC.
 03 PRINT-LINE.
 05 PIC X(50).
 05 PIC X OCCURS 1 TO 70
 DEPENDING ON PRINT-RDW.
 FD STEPMSGS-OUT RECORDING MODE IS F
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 RECORD CONTAINS 121
 DATA RECORD IS STEPMSGS-REC.
 01 STEPMSG-REC PIC X(121).
 WORKING-STORAGE SECTION.
 01 WS-ADHOC-CONSTANTS.
 03 PRINT-RDW PIC 9(8) COMP.
 03 SAVED-CC PIC S9(4) COMP VALUE 0.
 03 STEP-COUNT PIC S9(4) COMP VALUE 0.
 03 ISUB PIC S9(4) COMP VALUE +1.
 03 RSUB PIC S9(4) COMP VALUE +1.
 03 UTIL-PGM PIC X(8) VALUE 'IEBGENER'.
 03 DYN-PGM PIC X(8) VALUE 'BPXWDYN '.
 03 EOF-DYNFILE PIC X VALUE 'R'.
 88 DYN-DONE VALUE 'D'.
 03 EOF-SYSPRINT PIC X VALUE 'R'.
 88 ALL-DONE VALUE 'D'.
 03 EOF-SCHEDULE PIC X VALUE 'R'.
 88 SCHED-BUILT VALUE 'D'.
 03 util-rec pic x(80).

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

 01 BAD-COND-MSG.
 03 PIC X(13) VALUE
 '** HARNESS - '.
 03 ERR-PGM PIC X(8) VALUE SPACES.
 03 PIC X(9) VALUE
 ' in step '.
 03 ERR-STEP PIC X(3) VALUE SPACES.
 03 PIC X(18) VALUE
 ' issued COND CODE '.
 03 ERR-CC PIC 9999.
 03 PIC X(65) VALUE
 ' other steps bypassed **'.
 01 UTIL-PARMS.
 03 OPTLIST PIC 9(4) COMP VALUE 0.
 03 DDN-LIST PIC 9(4) COMP VALUE 72.
 03 PIC 9(8) COMP VALUE 0.
 03 PIC 9(8) COMP VALUE 0.
 03 PIC 9(8) COMP VALUE 0.
 03 PIC 9(8) COMP VALUE 0.
 03 PIC 9(8) COMP VALUE 0.
 03 PIC 9(8) COMP VALUE 0.
 03 PIC 9(8) COMP VALUE 0.
 03 PIC 9(8) COMP VALUE 0.
 03 SYSIN-DDN PIC X(8) VALUE 'GENSYSIN'.
 03 SYSPRINT-DDN PIC X(8) VALUE 'GENPRINT'.
 03 PIC 9(8) COMP VALUE 0.
 03 PIC 9(8) COMP VALUE 0.
 03 SYSUT1-DDN PIC X(8) VALUE 'SYSPRINT'.
 03 SYSUT2-DDN PIC X(8) VALUE 'STEPMSGS'.
 03 PIC X(8) VALUE 'SYSUT3 '.
 03 PIC X(8) VALUE 'SYSUT4 '.
 03 HDNGLIST PIC 9(4) COMP VALUE 2.
 03 PAGENUM PIC 9(4) COMP VALUE 1.
 01 ALLOC-DYNFILE.
 03 PIC S9(4) COMP VALUE +88.
 03 PIC X(9) VALUE
 'ALLOC FI('.
 03 DYN-DDNA PIC X(7) VALUE 'DYNFILE'.
 03 PIC X(18) VALUE
 ') SHR MSG(WTP) DA('.
 03 DYN-DSN PIC X(54) VALUE SPACES.
 01 UNALLOC-DYNFILE.
 03 PIC S9(4) COMP VALUE +26.
 03 PIC X(8) VALUE
 'FREE FI('.
 03 DYN-DDNU PIC X(7) VALUE 'DYNFILE'.
 03 PIC X(2) VALUE ') '.
 03 PIC X(9) VALUE 'MSG(WTP) '.

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

 01 DUMMY-SCHEDULE.
 03 PIC X(76) OCCURS 10 TIMES.
 01 REAL-SCHEDULE REDEFINES DUMMY-SCHEDULE.
 03 SCHED-ENT OCCURS 10 TIMES.
 05 NEXT-CC PIC S9(4) COMP.
 05 NEXT-STEP PIC X(3).
 05 NEXT-PGM PIC X(8).
 05 NEXT-PARMDD PIC X(8).
 05 NEXT-DSN PIC X(54).
 05 PIC X.
 LINKAGE SECTION.
 01 EXEC-PARM.
 03 PARM-LEN PIC S9(4) COMP.
 03 RUN-TYPE PIC X(4).
 88 ALL-STEPS VALUE 'ALL '.
 88 ONE-STEP VALUE 'ONLY'.
 88 RESTART VALUE 'GOTO'.
 03 PIC X.
 03 FIRST-STEP PIC X(3).
 PROCEDURE DIVISION USING EXEC-PARM.
 A010-HARNESS-SHELL.
 PERFORM B010-INITIALIZE.
 IF NOT ALL-STEPS PERFORM B030-SET-START.
 PERFORM B020-RUN-SCHEDULE.
 PERFORM B040-TERMINATION.

 * Logical end of program - HARNESS. *

 A010-HARNESS-SHELL-EXIT.
 GOBACK.
 B010-INITIALIZE.

 * Build the schedule of programs to be run. *

 MOVE SPACES TO DUMMY-SCHEDULE.
 OPEN INPUT PGM-LIST.
 PERFORM UNTIL SCHED-BUILT
 READ PGM-LIST AT END MOVE 'D' TO EOF-SCHEDULE
 NOT AT END
 MOVE GOOD-CC TO NEXT-CC(ISUB)
 MOVE STEP-NAME TO NEXT-STEP(ISUB)
 MOVE PGM-NAME TO NEXT-PGM(ISUB)
 MOVE PARM-DD TO NEXT-PARMDD
 (ISUB)
 MOVE PARM-DSN TO NEXT-DSN (ISUB)
 ADD +1 TO ISUB
 END-READ
 END-PERFORM.

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

 CLOSE PGM-LIST.
 SUBTRACT +1 FROM ISUB GIVING STEP-COUNT.
 MOVE +1 TO ISUB.
 B010-INITIALIZE-EXIT.
 EXIT.
 B020-RUN-SCHEDULE.

 * Execute the schyedule as requested. *

 PERFORM UNTIL RSUB > STEP-COUNT
 IF NEXT-PARMDD (RSUB) NOT EQUAL SPACES
 PERFORM C020-DYNALLOC
 CALL NEXT-PGM (RSUB)
 MOVE RETURN-CODE TO SAVED-CC
 CALL DYN-PGM USING
 UNALLOC-DYNFILE
 ELSE CALL NEXT-PGM (RSUB)
 MOVE RETURN-CODE TO SAVED-CC
 END-IF
 DISPLAY 'Step ' NEXT-STEP (ISUB) ' Program '
 NEXT-PGM (RSUB)
 'ended COND CODE '
 SAVED-CC
 UPON SYSOUT
 IF SAVED-CC > NEXT-CC(ISUB)
 PERFORM C010-ERROR-RTN
 END-IF
 ADD +1 TO RSUB
 END-PERFORM.
 B020-RUN-SCHEDULE-EXIT.
 EXIT.
 B030-SET-START.

 * Establish any restart criteria. *

 PERFORM UNTIL ISUB > STEP-COUNT
 IF NEXT-STEP (ISUB) = FIRST-STEP
 EVALUATE RUN-TYPE
 WHEN 'ONLY' MOVE ISUB TO RSUB
 MOVE RSUB TO STEP-COUNT
 COMPUTE ISUB =
 STEP-COUNT + 1
 WHEN 'GOTO' MOVE ISUB TO RSUB
 ADD +1 TO STEP-COUNT
 GIVING ISUB
 END-EVALUATE
 END-IF
 ADD +1 TO ISUB

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

 END-PERFORM.
 B030-SET-START-EXIT.
 EXIT.
 B040-TERMINATION.

 * Print accumulated SYSPRINT messages from any utilities. *

 CALL UTIL-PGM USING OPTLIST
 DDN-LIST
 HDNGLIST.
 B040-TERMINATION-EXIT.
 EXIT.
 C010-ERROR-RTN.
 MOVE NEXT-STEP(RSUB) TO ERR-STEP.
 MOVE NEXT-PGM(RSUB) TO ERR-PGM.
 MOVE RETURN-CODE TO ERR-CC.
 DISPLAY BAD-COND-MSG UPON SYSOUT.
 GOBACK.
 C010-ERROR-RTN-EXIT.
 EXIT.
 C020-DYNALLOC.

 * Create utility control file (SYSIN). *

 MOVE NEXT-DSN (RSUB) TO DYN-DSN.
 INSPECT DYN-DSN REPLACING FIRST ' '
 BY ')'.
 CALL DYN-PGM USING ALLOC-DYNFILE.
 OPEN INPUT DYN-FILE
 OUTPUT CNTL-FILE.
 PERFORM UNTIL DYN-DONE
 READ DYN-FILE INTO UTIL-REC
 AT END MOVE 'D' TO EOF-DYNFILE
 NOT AT END
 WRITE CNTL-REC FROM UTIL-REC
 END-READ
 END-PERFORM.
 CLOSE DYN-FILE, CNTL-FILE.
 MOVE 'R' TO EOF-DYNFILE.
 C020-DYNALLOC-EXIT.
 EXIT.

 * Physical end of program - HARNESS. *

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

One of the invoked programs

This is one of the programs used to test the harness. This program loads a
VSAM KSDS and was modified to exploit Dynamic File Allocation using
BPXWDYN, with the DDNAME and DSN associated with the KSDS being
input via the KSDSDSNS file.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. KSDSLOD.
 AUTHOR. T.R.SAMBROOKS.
 INSTALLATION.
 DATE-WRITTEN. 29TH AUG 2015.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.

 * SAMPLE PROGRAM TO LOAD AN EMPTY VSAM KSDS DATA SET. *

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT DSNS-IN ASSIGN TO UT-S-KSDSDSNS.
 SELECT ENGINES-IN ASSIGN TO UT-S-INDD.
 SELECT KSDS-FILE ASSIGN TO INDEXED-OUTDD
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 RECORD KEY IS LOCO-KEY
 FILE STATUS IS FSTAT-CODE
 VSAM-CODE.
 DATA DIVISION.
 FILE SECTION.
 FD DSNS-IN RECORDING MODE IS F
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 RECORD CONTAINS 80 CHARACTERS
 DATA RECORD IS DSN-REC.
 01 DSN-REC PIC X(80).

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

 FD ENGINES-IN RECORDING MODE IS F
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 RECORD CONTAINS 80 CHARACTERS
 DATA RECORD IS FB-LOCO-REC.
 01 FB-LOCO-REC.
 COPY F100REC.
 FD KSDS-FILE RECORD CONTAINS 74 CHARACTERS
 DATA RECORD IS KSDS-REC.
 01 KSDS-REC.
 COPY F74REC.
 WORKING-STORAGE SECTION.
 01 WS-ADHOC-CONSTANTS.
 03 SUB PIC S9(4) COMP VALUE +1.
 03 DYN-PGM PIC X(8) VALUE 'BPXWDYN '.
 03 FSTAT-CODE PIC XX.
 03 VSAM-CODE.
 05 R15-RETURN PIC 99 COMP.
 05 VSAM-FUNCTION PIC 9 COMP.
 05 VSAM-FEEDBACK PIC 999 COMP.
 03 WS-EOF PIC X VALUE 'M'.
 88 ALL-DONE VALUE 'D'.
 01 ALLOC-DYNFILE.
 03 PIC S9(4) COMP VALUE +80.
 03 PIC X(9) VALUE
 'ALLOC FI('.
 03 DYN-DDNA PIC X(9) VALUE SPACES.
 03 PIC X(17) VALUE
 ' SHR MSG(WTP) DA('.
 03 DYN-DSN PIC X(45) VALUE SPACES.
 01 UNALLOC-DYNFILE.
 03 PIC S9(4) COMP VALUE +27.
 03 PIC X(8) VALUE
 'FREE FI('.
 03 DYN-DDNU PIC X(8) VALUE SPACES.
 03 PIC X(2) VALUE ' '.
 03 PIC X(9) VALUE 'MSG(WTP) '.
 PROCEDURE DIVISION.

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

 A010-MAIN-PGM SECTION.
 PERFORM B010-INITIALIZE.
 PERFORM UNTIL ALL-DONE
 READ ENGINES-IN AT END
 MOVE 'D' TO WS-EOF
 NOT AT END MOVE FB-LOCO-KEY TO LOCO-KEY
 MOVE FB-COY TO COY
 MOVE FB-CAT-NO TO CAT-NO
 MOVE FB-PRICE TO PRICE
 MOVE FB-LOCO-DES TO LOCO-DES
 MOVE FB-LOCO-POWER TO LOCO-POWER
 MOVE FB-LOCO-NAME TO LOCO-NAME
 WRITE KSDS-REC
 END-READ
 END-PERFORM.
 PERFORM B020-TERMINATION.
 A010-MAIN-PGM-EOJ.
 GOBACK.
 B010-INITIALIZE.
 OPEN INPUT DSNS-IN.
 READ DSNS-IN AT END CLOSE DSNS-IN.
 UNSTRING DSN-REC DELIMITED BY '='
 INTO DYN-DDNA, DYN-DSN.
 INSPECT DYN-DDNA REPLACING FIRST ' ' BY ')'.
 INSPECT DYN-DSN REPLACING FIRST ' ' BY ')'.
 CALL DYN-PGM USING ALLOC-DYNFILE.
 OPEN INPUT ENGINES-IN
 OUTPUT KSDS-FILE.
 B010-INITIALIZE-EXIT.
 EXIT.
 B020-TERMINATION.
 CLOSE ENGINES-IN
 KSDS-FILE.
 MOVE DYN-DDNA TO DYN-DDNU.
 CALL DYN-PGM USING UNALLOC-DYNFILE.
 B020B-TERMINATION-EXIT.
 EXIT.

 * THIS IS BOTH THE LOGICAL AND PHYSICAL END OF - KSDSLOD *

Legac-E Education

Using a Harness to control execution

© Copyright Legac-e Education 2018

Invoking JCL

This is the JCL used to test the harness. It accepts two parameters via the
EXEC statement PARM field. The first 4-bytes indicate the type of run, which
is separated from the 3-byte step name by a comma. As coded the program
only caters for a 10 program schedule. The run types currently supported are
ALL, run the entire schedule or ONLY, run just the one program. The
SCHEDULE DD statement provides the schedule information as a series of
80-byte records. Each record contains the stepname (cols 1-3), program
name (cols 5-12), an acceptable return code (cols 14-15) and for utility
programs the DSN associated with SYSIN can be coded in columns 17
onwards.
// EXPORT SYMLIST=STU
// SET STU=&SYSUID
//S0010 EXEC PGM=HARNESS,PARM='ALL ,S03/ALL31(OFF),STACK(,,BELOW)'
//STEPLIB DD DISP=SHR,DSN=&STU..LOAD.LIBRARY
//SYSOUT DD SYSOUT=*
//STEPMSGS DD SYSOUT=*
//GENPRINT DD DUMMY
//GENSYSIN DD DUMMY
//SYSIN DD LRECL=80,RECFM=FB,BLKSIZE=0,
// SPACE=(TRK,5)
//SYSPRINT DD LRECL=125,RECFM=VBA,BLKSIZE=1254,
// SPACE=(TRK,5),DISP=(MOD,PASS)
//SCHEDULE DD *,SYMBOLS=JCLONLY
S01 IDCAMS 00 IDCAMS01 &STU..SOURCE.COB(IDCAMS01)
S02 KSDSLOD 00
S03 IDCAMS 00 IDCAMS03 &STU..SOURCE.COB(IDCAMS03)
S04 RRDSLOD 00
//KSDSDSNS DD *,SYMBOLS=JCLONLY
OUTDD=&STU..KSDS.FILE
//INDD DD DISP=SHR,DSN=&STU..SOURCE.PLI(ENGINES)
//RRDSDSNS DD *,SYMBOLS=JCLONLY
DIESEL=&STU..RRDS.DIESEL
STEAM=&STU..RRDS.STEAM
//MODELSIN DD DISP=SHR,DSN=&STU..SOURCE.PLI(ENGINES)

